NASA | - NASA-TP-2529 198600191 9
Technical |
Paper
2529

May 1986 | | |
Solution of Elliptic Partial
‘Ditferential Equations by
Fast Poisson Solvers Using
a Local Relaxation Factor

[—One-Step M ethod

Sin-Chung Chang

NNASN






NASA
Technical
Paper
2529

1986

NANASAN

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

Solution of Elliptic Partial
Ditferential Equations by

Fast Poisson Solvers Using
a Local Relaxation Factor

I[—One-Step Method

Sin-Chung Chang

Lewis Research Center
Cleveland, Ohio






Summary

An algorithm for solving a large class of two- and three-
dimensional nonseparable elliptic partial differential equations
(PDE’s) is developed and tested. It uses a modified
D’Yakanov-Gunn iterative procedure in which the relaxation
factor is grid-point dependent. It is easy to implement and
applicable to a variety of boundary conditions. It is also
computationally efficient, as indicated by the results of
numerical comparisons with other established methods.
Furthermore the current algorithm has the advantage of
possessing two important properties which the traditional
iterative methods lack; that is, (1) the convergence rate is
relatively insensitive to grid-cell size and aspect ratio, and (2)
the convergence rate can be easily estimated by using the
coefficient of the PDE being solved.

Introduction

Since the middle sixties, fast direct solvers (FDS’s) have
been developed for the numerical solution of separable elliptic
partial differential equations (PDE’s) (refs. 1 to 5). Based on
Fourier analysis and cyclic reduction, FDS algorithms are most
effective on a uniform rectangular grid. They can obtain the
solution with efficiency far beyond the reach of traditional
iterative procedures such as successive overrelaxation (SOR)
methods.

Generally, FDS algorithms are not directly applicable to an
elliptic problem with either a computation domain of irregular
shape or a nonseparable PDE. The limitation of the
computation domain may be circumvented either by mapping
the original domain onto a rectangular domain or by using the
capacity matrix method (ref. 5). The limitation of a
nonseparable PDE can be circumvented, by a semidirect
procedure, that is, an iterative procedure driven by an FDS.
In this study, a new semidirect procedure is developed and
used as an elliptic solver for both two-dimensional (2-D) and
three-dimensional (3-D) problems. This new iterative
procedure is easy to implement, computationally efficient, and
applicable to a variety of boundary conditions. Furthermore
it has the advantage of possessing two important properties
which the traditional iterative methods lack; that is, (1) the
convergence rate is insensitive to grid-cell size and aspect ratio,
and (2) the convergence rate can be easily estimated with the
coefficients of the PDE being solved.

Many elliptic PDE’s can be expressed as

Qu=nh (D

where Q is a nonseparable second-order linear elliptic
operator, u the dependent variable, and 4 a given source term.
Equation (1) may be solved with the iterative procedure

P! —u") = — 7(Qu" — h) )

where n is the iteration number, 7 a nonzero relaxation factor,
and P a separable elliptic operator, which can be directly
inverted by an FDS. This procedure is a continuous analogue
of the D’Yakanov-Gunn iterations (ref. 6) and was utilized
by Concus and Golub (ref. 7) and Bank (ref. 8) in their works
on the numerical solution of nonseparable elliptic equations.
In the previous works involving iteration (2) the relaxation
factor 7 is treated as a constant and the iteration is accelerated
by an optimal choice of 7. In the current report, a more
efficient algorithm is obtained by using a spatially varying
relaxation factor.

The use of a local (spatially varying) relaxation factor in
the current study is motivated by an earlier study of a
semidirect procedure (ref. 9). In the previous study, the local
convergence rate evaluated by using a simple von Neumann
analysis, to a great extent, is consistent with the numerical
results. Based on this observation, it becomes obvious that a
local relaxation factor could be used in iteration (2) to optimize
its local convergence rate. Recently, a similar idea was also
used by Botta and Veldman (ref. 10) to develop their SOR-
related local relaxation method. However, as shown later,
there is an underlying reason which makes the use of a local
relaxation factor in the current procedure particularly
attractive.

As shown by the work of Bank (ref. 8), iteration (2) can
also be accelerated by choosing an operator P, which closely
resembles the operator Q. Application of this technique,
however, could be limited by the following considerations:

(1) This technique may require the use of a general separable
operator P. This, however, is computationally inefficient, since
an FDS code for a general separable operator is about five
times slower than one for the Laplacian v 2 (ref. 5).

(2) To apply this technique, the FDS code for the operator
P, generally, must be made to individual specifications. This
may require a considerable effort.

The preceding considerations lead us to choose P = V 2or
its equivalent in the current study.



In the section Analysis, the convergence rate of the central
difference form of equation (2) is studied for a constant
coefficient operator Q by assuming the iterative errors satisfy
the periodic boundary conditions. The analysis is a rigorous
version of the von Neumann analysis and its results are used
to determine the optimal value of the relaxation factor 7. In
the section Local Relaxation, the results obtained in the section
Analysis are extended to solve PDE’s with variable
coefficients. In the section Numerical Evaluation, the current
method is numerically evaluated with a variety of 2-D
nonseparable elliptic PDE’s. In addition to the advantages
noted previously, the results of this numerical evaluation
indicate that the current procedure can be used to solve PDE’s
with a cross-derivative term and that it works very well for
many PDE’s with rapidly varying coefficients.

Finally, in the section Application to a 3-D Flow Problem,
the current procedure is incorporated into an Euler Solver
(ref. 9) to obtain solutions for 3-D incompressible flows in
a 180° turning channel. It is shown that this new procedure
converges with a rate much higher than that reported in
reference 9. The successive line overrelaxation (SLOR)
calculations referred to in the section Numerical Evaluation
were carried out by using a code developed by Shih-Hung
Chang of Cleveland State University.

Analysis

As an initial step, iteration (2) is studied by assuming that
7 is a constant and
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where a, b, and c are arbitrary constants subjected to the
elliptic conditions

a>0
c>0 @

ac —b%>0

Furthermore, it is assumed that

a? a?
pdef. a"é? + coﬁ (@a,>0,c,>0) )
where a, and ¢, are two arbitrary positive constants. When
a uniform grid with grid intervals Ax and Ay in the x- and
the y-directions is used, the central difference forms of
equations (1) and (2) at a grid point (i,j) are

2

O(ui) = hy; (6)
and
Pl - ut) = 70 (ut) ~ a)

respectively. Here h;; is the source term and the finite
difference operators Q and P, respectively, are defined by

Q(Vij)dif' a(Ax) 2y + Vie1j — 2viy)
+ c(Ay) _Z(Vi,j+1 + V-1 — 2vy)
+ b(2AxAY) T (Viprjer + Vie1jo
T T Viklj—1 ~ Vielj+1)
®)
and
ﬁ("i,j)dif' ay(Ax) "2 (v + Vie1; — 2viy)

+ ¢ (AY) T2 (v + Vij—1— 2V )]
where v; ; is any function of the grid point (i,j). The operator
P can be considered as a central difference Poisson operator
for a uniform grid with grid intervals Ax/Va, and Ay/Vc,.
Thus, it may be inverted by using a fast Poisson solver.

To study the convergence rate of iterative procedure (7),
one notes that equations (6) and (7) imply that

Plet! — efy) = = 10(el)) (10)
where
en et ul — 11

Given a set of e;’s which satisfies the periodic conditions

ei=elg;=el 1 (ij=0,%1,+2,..) (12)

where K(=2) and L(=2) are two arbitrary integers, it is shown
in appendix A that

(1) eiy’s m=1,2,...; i,j=0,£1,%2,...) are uniquely
determined by equation (10) and the following auxiliary
conditions:

e?J = e,'-'+KJ- = effHL (n = 1,2,) (13)

and

K-1) €-1

i=0  j=0

(n=12,.) (14)



(2) Let

*Dger. | kei  fof _
“Oaet —_oxp | 2a1 (o2 + -2 I=v=1
?u = VKL p{ <K L

Gj=0 +1,£2,..;k=01.2,.,K-1);

£=0,1,2,...

] 2
®0def. _ 43 o | — sin (xk/K
a! {a [Ax sin (m )]
) 2
+c, |:A_y sin (rf/L)} }

1; £=0,1,2,...,

(L —1) (15)

(k=0,1,2,... (K- (L-1) (16)

1 2 1 ’
U;k,l)dgf. —4 {a \: — sin (1rk/K):| +c [ — sin (Wf/L)]
Ax Ay

+2b [ i sin (wk/K )] [ Aiy sin (WB/L)]

X cos (wk/K) cos (rE/L)}

k=012, ,(K-150=012,.,L-1) (7
K-1) L-1
FO. D) def. E E ¢d; ¢(k’) *k,0 eV (18)
i=0 j=0
and
)
G("'[)(T)dﬁf'l—r<jm (k) € ¥ (19)
D

where € means an element of, and ¥ is the set of ordered pairs
defined by

b {k,0) | k=0,1,2,...,(K— 1);

£=0,1,2,...,(L — 1); (k,0) # (0,0)} (20)

Then the unique solution to equations (10), (13), and (14) is
explicitly given by (n = 1,2,...)

-
e,',j = E
(k,0)e¥

One notes that G%9(7) is well defined for all (k,f) € ¥,
since

[G(k,e)(,r)]” « EO kD oD 1)

oV <0 ifkOe¥ 22)
This inequality follows from the assumptions a, > 0 and
¢, > 0, and the fact that (0,0) does not belong to ¥.

As defined in equation (11), e}; is the error of nth iterative
solution. According to equation (21), this error is a sum of
(K X L — 1) terms, and each term is multiplied by the factor
G*9(7) as the iteration number n increases by 1. Obviously,
the term with the greatest value of |G*9(7)| eventually
becomes dominant if the corresponding E%*® does not
vanish. Let the error norm lle"ll and the asymptotic error
multiplication factor M*, respectively, be defined as

K- @C-D 172
Ile”lldi'f'|: Yy ¥ (e;fj)z} | 23)

i=0  j=0
and
e 1
M*4t fim (24)
n—to el

Then, assuming every E®*9 5 0, it may be concluded that

lim  [¢%*"! ,
n—+0o e = G(7) j=0,£1,£2,..) 25)
e,-,j
and
= G(1) (26)

where, for a given 7,

G(n)«" Max {IG(k’[)(Tﬂ}
(29131
A direct implication of equation (26) is that the value of

M? reaches its minimum if the parameter 7 is chosen such
that the function G(7) is at its minimum. Let

(k,£)
et 94

= (k,0)
9p
and
Ymax &f Max {'Y ®0
k,De¥
(k,e)é v

It is shown in equation (33) that v, = Ymn > 0. As a result,
one concludes from equation (19) that G(7) reaches its
minimum



r-1

G Gr)=——<1 27
(%) T 1 27
when
2
=0t = (28)
Ymax + Ymin

Here 7° is the optimal relaxation factor, and

y def. Ymax (29)
Ymin

Combining equations (26) and (27), one concludes that (1)
M® < 1if 7 = 7°, and (2) M* increases with an increase of
L.

The values of vy, and y,,, generally, are functions of the
integers K and L. However, as will be shown, v, and vy,
approach two separate limits as the values of K and L increase.
Let

A def.

max =

Lo a2 Y
E<a+c+\/(a—c) +4(b)) (30)

and

)\mi,,dzfé(aw—\/(a—é)2+4(13)2) 31

where

et Z >0 (32)

In appendix B, it is shown that
>\max = Ymax = Ymin = )\min >0 (33)
and

lim Ymax = Nmax

K,L—+co (34)
lim Ymin = )\min

K, L+

4

Thus, in the limit of K,L— + oo, 7° and G°, respectively,
approach

- 35)
)\max + )‘min
and
Gt g ; i <1 (36)
where
* )‘max
z dﬁf')\—— 37N
min

Two comments on equations (33) to (35) are as follows:
(1) The uniform bounds Ay, and Ay, generally do not

exist if the operator P is replaced by an operator of other type.
(2) Since Nyay + Nyin = @ + &,

. 2

T=A A
a+¢

(3%

Using equations (30) to (32), (36), and (37), it can be shown
that the parameter G~ is a function of a, b, ¢, and c,/a,. If
the coefficients q, b, and ¢ are known, G becomes a function
of the single variable c,/a,. As shown in appendix C, this
function reaches its minimum

x b
Gm":f-% (39)
when

Furthermore, assuming c,/a, = c/a, it is shown in appendix
C that

=7 1)

for any finite integers K = 2 and L = 2.

At this juncture, it is noted that equations (35) and (36) can
also be derived (ref. 11), in a less rigorous fashion, by using
a simple von Neumann analysis and theorem 1 in appendix B.
The current analysis shows that the von Neumann analysis
for equation (2.8) is justified only under many restricted



conditions. One of them, the uniqueness condition (14),
generally is not required for other iterative procedures.

This section concludes with a discussion on the possible
generalization of the 2-D results to a space of higher
dimension. In an N-dimensional space (N = 2), equation (3)
may be replaced by

N 62
= ,— 42
Q Z; A dx,0x, “2)
pp=1 #

where o, are real constants and x,, the independent variables.
Furthermore, the elliptic condition (4) is replaced by the
requirement that the matrix

A% (o) (43)

is symmetric and positive definite (SPD). Also the operator
P assumes the new form

32

. >0, p=1223,.,N) (44
ax, 0, Py 2 ) (44)

N
Pdif. E pu
p=1

With the aid of equations (42) to (44) and theorem 1 in
appendix B, equations (6) to (37) may be generalized in a
straightforward manner. However, it should be cautioned that,
for N =2, the parameters A, and A, are defined,
respectively, as the greatest and the smallest eigenvalues of
the SPD matrix

A%t (@&,,) 45)

where

&, 7% 46)
wt’v

Finally, it is noted that equations (38) to (41) have no trivial
counterparts in a space with N > 2.

Local Relaxation

In this section, the numerical procedure developed in the
previous section is extended to solve PDE’s with variable
coefficients. To proceed, the operator Q is initially assumed
to have the form defined in equation (3), with the
understanding that the coefficients a, b, and ¢ are functions
of x and y subjected to the elliptic condition (4).

In the variable coefficient (VC) version of the iterative
procedure (7), the operator Q will be defined by using equation
(8), with the understanding that the coefficients a, b, and c,

respectively, are replaced by a;, by, and c;. That is, the
discretized values of a, b, and c at the grid point (i,j). On the
other hand, the coefficients a, and c, associated with the
operator P (eq. (9)) are again assumed to be positive constants.

The preceding definitions of P and Q are directly applicable
to any internal grid point. On a periodic boundary, they are
also applicable if the periodic conditions are invoked.
Similarly, by using an extrapolation technique (ref. 12), the
operators P and Q can be defined on a Neumann boundary.

The relaxation factor 7, in the VC version, is replaced by
its grid-point dependent version 7;. Ideally, the values of 7;’s
may be chosen such that the parameter M* (eq. (24)) is
minimized. Unfortunately, this approach is impractical because
of the complexity arising from the variable nature of the
coefficients of Q and the necessity to consider the boundary
conditions. The alternative adopted in the current study is based
on the following heuristic arguments: Recall that the analysis
described in the previous section is a rigorous von Neumann
analysis for equation (10). The results of this analysis are fully
justified only under very restricted conditions. However, it
is well known that the von Neumann analysis often gives useful
results even when its application cannot be fully justified.
Particularly, by freezing the variable coefficients at their values
at the grid point under consideration, this analysis has been
routinely used in the stability study of the numerical procedure
solving PDE’s with variable coefficients. Because of the above
considerations, the VC version of equation (38) is assumed
to be

(47)

7'," Jj =
where

A a.. A c“
;¥ I>0 and X L>0

ao CO
In view of equations (25) and (36), it is also assumed that

et
im 191 g (48)

n—+oo el v
where Gj; is the local error multiplication factor defined by

*
def. L;—1

, def. 21 49
ri+1 @

The parameter ¥ ,] is the grid-point dependent version of £,
It will be evaluated by using equations (37) and (30) to (32)
with the understanding that the coefficients a, b, and c,
respectively, are replaced by ay, by, and c;. Let
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IIe"IIdif'I: E (e,’-f]){l (50)
(i.)ed

and

G~ %" Max (G} 61Y)
(ij)€®

where ® denotes the set of (i,7)’s where ;s are to be solved.
Then, with the aid of equation (24), assumption (48) implies

M® = G* (52)

Several comments can be made relating to equation (52).

(1) Since G” can be evaluated by using the known
coefficients a,, ¢,, a;;, by, and ¢y, the value of M, and thus
the convergence rate of the current iterative procedure, can
be predicted by using equation (52).

(2) As long as the coefficients a;;, b;, and ¢; do not vary
greatly from one grid point to its neighbors, the value of G*
is not sensitive to the grid-cell size and aspect ratio. This
observation coupled with equation (52) implies that the
convergence behavior of the current numerical procedure,
generally, may not be sensitive to the grid-cell size and aspect
ratio.

(3) The VC version of equation (7) can be expressed in a
form in which the coefficients a, and ¢, appear only in the
ratio ¢,/a,. As a result, the convergence behavior of the
current iterative procedure is dependent on the ratio ¢ /a,, but
not on the individual values of a, and ¢,. Similarly, one can
also show that the parameter G* is dependent on the ratio
¢,/a,, but not on the individual values of a, and c,. Equation
(52) suggests that, in order to maximize the convergence rate,
the ratio c,/a, should be chosen such that G* is at its
minimum.

Evaluation of the optimal value of ¢ /a,, generally, may
involve complicated numerical calculations. However, in case
that b; = 0 for all (i,j) € ¥, it is shown in appendix D that G*
reaches its minimum

def. V Bmax/Bmin -1

G ———— 53
- Bmax/ Bmin +1 ( )
if and only if

C

a_o =N Bmax * Bmin (54)
where

c vy

(i,j)E‘P aij

"

Bmindﬁf’ Min -
@.j)ed a,-j

may be evaluated either analytically or numerically.
The current procedure can be modified to solve a class of
self-adjoint PDE’s. That is,

(55)

— + def. _a_ 3 2_ i
Q=07 (xy)= P <p(x,y) ax> + % <q(x,y) ay> (56)

where p and g are arbitrary positive functions of x and y. A
central difference operator Q" corresponding to the
differential operator Q* is defined by (ref. 13)

§+(Vi,j)d§f' (Ax)~2 [P(i— 2)Vi-1j F Pus12)Vie1y

- (p(i—l/Z)j + p(i+1/2)j>vi,j:|

+ (Ay) _2|:qi(j—1/2)vi,j—1 t Qi+ 1/2)Vij+1

- (qi(i—l/Z) + qi(j+1/2))vi,j] (57

where
P(iil/z)jdgf'P(xi + Ax/2,y;)
and
i+ 1 g (xy; = Ay/2)

With the assumption that coefficients p and ¢ do not vary
greatly from one grid point to its neighbors, then

Q+(vi,j) = pi(A%) 2V + Viprj — 2v;»)
+ q;(Ay) _2(ViJ—1 + Vije1 — 2vy)
Thus Q%)) = O(i)) (eq. (8)), if a; = p;;, ¢y = gy, and

b;=0 for all (i,j))€®. This observation coupled with
equation (47) lead to the assumption

2
By + gy

7y (58)

where p;%" p,/a, and 4;%" g;/c,. Similarly, in the case that

0 = Q% (x,y), the parameter G* will be evaluated by



assuming a; = p;;, ¢; = ¢;;, and b; = 0. Also the right sides
of equations (53) and (54) will be evaluated with

B " Max X@}

@nee (py

IBmind-E-ﬂ Mll’l {%1
@.)He2 (py

The technique of local relaxation described for 2-D
problems, can be applied in a similar fashion, to 3-D problems.
The value of this technique as a tool to solve PDE’s with
variable coefficients will be demonstrated in the subsequent
sections.

(59

Numerical Evaluation

Numerical evaluation of the current method begins with the
following preliminaries:

(1) In this section the domain for all numerical problems
is assumed tobe 1 = x = 0 and 1 = y = 0. Moreover, the
operator Pis inverted by using a Fast Poisson Solver (ref. 14).

(2) The convergence rate is evaluated by using

0,(n) %" —log)o lery (60)
lle®l

or

0,(n)% —log, lro—" (61)
[P

where e” is the error norm defined in equation (50), while
llr"ll is the residual norm defined by
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||r"||d§f'{ ) [Q‘(ug,-) —h,-,,]} (62)
(e

The solution u;; obtained to machine accuracy is used to
evaluate O,(n). Furthermore, since u;; = 0 for all (i,j) € ®
in the current numerical study, O,(n) can be interpreted as
the number of correct digits in uj);.

(3) In view of equation (52), the parameters O,(n) and
O,(n) will be predicted by using

Oy (n) = — n+log;o(G*) (63)

or its continuous version; that is,

Om* 1lim O[n) (64)

Ax,Ay~0
Numerical evaluation involving PDE’s with constant
coefficients are given in reference 15. The first group of PDE’s
to be studied includes

92 92
(1+2x2+2y2)-ax—';+(1+x2+y2)§’;=1 (65)
3%u %u

1+22+2y)—+ (1 +x2+ yH)—
( y)ax2 ( y)axay
62
+(1+x2+y2)a—l;=1 (66)
y
d%u %u 3%u
1+22 42—+ (1 +x* +y)—+ 1 +x* +y)—
( y)ax2 (1+x y)axay ( y)ay2

+ [1+3e("2+"2)]%+ 1 +3e<x2+y2)]3—:

~ [1+3e@ M =1 ©7)

d du a du
el 1 2 N tad - 2 2 VAN Sdid
™ [{ +(x +y)}6x] +6y l:{ +@x“+y )}ay]

=1 0=12,4,6,8 (68)

Fifteen numerical problems associated with the above PDE’s
are defined in table I. The parameters MX and MY,
respectively, are the numbers of grid intervals in the x and
y directions. The other parameter /B specifies the particular
set of boundary conditions (fig. 1). All these problems are
solved by assuming a, = ¢, = 1.

Problems 1 to 5 are associated with the same PDE (65). They
differ on the grid-cell size, aspect ratio, and boundary
conditions. As shown in table I, the values of either O,(20)
or 0,(20) are fairly accurate estimates of 0,(20). Also, as
expected from the current theoretical development and the
experiences of other researchers (refs. 7 and 8), the effects
of grid-cell size and aspect ratio on the convergence rate are
minimal. Even the very large aspect ratio (16:1) does not cause
any significant reduction in the convergence rate. Furthermore,
the convergence rate is insensitive to the particular set of
boundary conditions used.



TABLE I.—NUMERICAL PROBLEMS ASSOCIATED WITH
EQUATIONS (65) TO (68) AND COMPARISONS OF 0,(n),
0,(n), AND 0;(n)

[n = 20 for problems 1 to 5, n = 32 for problems 6 to 15.]

Problem | Equation | ¢ [ IB | MX | MY | O.(n) | O,(n) 0;(n)
number
1 (65) NA| 1|16 | 16 | 14.50 | 12.34 | 12.04
2 NA{ 1|64 |64 | 13.78 | 12.11 | 12.04
3 NA| 1| 64 4 | 13.96 | 12.68 | 12.04
4 NA |2 |16 {16 | 13.96 { 12.34 | 12.04
5 NA | 3|16 | 16 | 13.62 | 12.18 | 12.04
6 (66) NA| 1|16 |16 | 1443 | 969 | 9.63
7 NA| 1|64 |64 | 1258 | 964 | 9.63
8 NA| 1| 64 4 | 19.04 | 10.01 | 9.63
9 NA|[2 |16 |16 | 1450 | 9.66 | 9.63
10 NA[3 |16 (16 | 1544 | 9.66 | 9.63
11 67 NA[ 1|16 |16 | 13.05 | 9.69 | 9.63
12 (68) 2 1|16 |16 | 17.24 | 15.27 | 15.27
13 4 1|16 | 16 | 16.83 | 15.27 | 15.27
14 l 6 1 16 16 | 13.44 | 15.27 | 15.27
15 8 1|16 | 16 7.55 | 15.27 | 15.27
y
(Periodic in y-direction) L X
u=0 uix, 1) = ulx, 0) oufoy=10
u=0 u=0 u=0 u=0
— - - > e
u=0 aulbt =0
@@ IB=1 (b) IB= 2. (c)IB=3,

Figure 1.—Three sets of boundary conditions on a unit square.

Problems 6 to 10 are associated with equation (66), which
differs from equation (65) only in the appearance of a cross-
derivative term. The numerical results indicate that the
convergence rate may be substantially underestimated by the
parameter O4(32) or 0/32). Furthermore, it is more sensitive
to the change of grid-cell size and aspect ratio. An explanation
for these peculiar behaviors associated with a PDE with a
cross-derivative term is given at the end of appendix B.

The success of the current numerical method in solving a
PDE with a cross derivative term is rather significant. This
author is unaware of any earlier work which solves PDE’s
of this type with a semidirect procedure. The lack of progress
in this area may be due to the fact that it is very difficult to
choose a separable operator P which closely resembles a
nonseparable operator Q containing a cross-derivative term.
(By definition, a separable operator P can not have a cross-
derivative term.)

8

Equation (67) contains first-order and zero-order derivative
terms. This type of PDE is solved by simply adding the central
difference form of those terms to the term Q(u}' ') in
equation (7). The value of O,32) for problem 11 indicates
that the current procedure works very well even though the
coefficients of first-order and zero-order derivative terms in
equation (67) are of the same order of magnitude as the
second-order terms. This is rather unexpected because the
coefficients of lower order terms are completely neglected in
the evaluation of the local relaxation factor.

Equation (68) belongs to the class of self-adjoint PDE’s
defined in equation (56). The variation of the values of the
coefficients p and g increases progressively as one goes from
£=2to {=4 and so on. For { = 8, the increase in the values
of p and g from one corner (x =y = 0) to another corner
(x =y = 1) on the unit square is of the order of 100 times.
It might appear that the technique of local relaxation is no
longer valid. The results shown in table I indicate the current
method is still useful in this extreme case.

The numerical study of problems 1 to 15 concludes with
a discussion on their convergence histories. Since equation (63)
represents a linear relation between O,(n) and n, it is not
surprising that the relations between O, (n) and n curves are
closely approximated by straight lines for the above problems
with the exception of perhaps problems 13 to 15. As shown
in figure 2, the linear relation between O,(n) and n
gradually deteriorates as the variation of the coefficients p and
q increases. The robustness of the current algorithm is most
evident in its ability to reverse the trend toward divergence
during the first few iterations.

The second group of PDE’s to be studied includes

3 2ou
=1 +@+y?| =
ox [ (e +) ] ox

2
i}
+ 9 1 +sin? (x + y) ] QU hy(x,y) (69)
ay dy

i) 1 29u
= 1+=a*+yH| —
ox [ 2(x y)]ax
+i 1+1(x4+ 4)26—“ = hy(x,y) (70)
3 IR P G

where h (x,y) and h,(x,y) are source terms chosen such that

u = uy(x,y)%" sin x sin y 71)
and
= (x,y) %" [x(1 — x)yd - y)]° (72)

respectively, are the exact solutions of equations (69) and (70).
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Figure 2.—Convergence histories of problem numbers 12 to 15.

Definitions of the four numerical problems associated with
equations (69) and (70) along with the values of 0,(10),
0,(10), and O/(10) are given in table II. The boundary values
of u in these problems are specified by using equation (71)
or equation (72).

Problem 16 is one of the test problems used by Bank
(ref. 8). Compared with the current value of 0,(10) = 5.96,
the values obtained by Bank are 3.49 without using any scaling
technique, and 3.87, 4.81, and 6.76 using three different
scaling functions. Since the operator P used in Bank’s method
is a general separable operator, the corresponding FDS code
usually must be made to individual specifications and is about
five times slower than that for the Laplacian Vv 2 Thus, the
current algorithm is easier to use and, for problem 16, more
efficient by at least a factor of 4.

Problem 18 is another test problem used by Bank. Compared
with the current value of 0,(10) = 8.59, the value obtained
by Bank is 5.88 without using his scaling technique and 14.79
if a scaling function is used. This problem along with problem
19 was also solved by Concus and Golub (ref. 7). The method
of Concus and Golub is also driven by a fast Poisson solver
and the results obtained are comparable with ours. However,
their method is applicable only when p = g as in the case of
equation (70).

TABLE II.—NUMERICAL PROBLEMS ASSOCIATED WITH
EQUATIONS (69) and (70), AND COMPARISONS OF
0,(10), 0,(10), and 0(10)

Problem | Equation | MX | MY | c/a, | 0.,(10) | O10) | O(10)
number

16 (69) 16 | 16 [%0.423 | 5.96 5.33 3.92
17 69) 64 | 64 (%0.379 | 5.27 4.22 3.47
18 (70) 16 | 16 |%1.0 8.59 8.09 o
19 (70) 64 | 64 |?1.0 8.47 7.95 o

2Evaluated from equation (54).

The last PDE’s to be studied in this section are

2 [ 1 d

3-‘2‘—+i 1+-x—-y|=l=0 (73)
ox® dy(| 2 ay

2 [ 1 d

Su 2 0+ia-pn|Zl =0 (74)
oax®  ay( | 2 ay

An exact solution for both equations (73) and (74) is

1
u=y+ sz (75)

Equations (73) and (74) were numerically solved by using a
grid with MX = MY = 31. It is assumed that the values of
at all boundary grid points are specified by using equation (75).
To compare the efficiency of the current method with
traditional iterative methods, these numerical problems are
solved by using the current method along with SLOR
(successive line overrelaxation). The results of central
processing unit (CPU) time comparisons are summarized in
table III. Those parameters used in this table which were not
defined previously are as follows:

N, smallest value of n which satisfies the convergence
criterion

(Ax?elrl < 1078 (76)
where llr”ll is defined in equation (62) and Ax = 1/31

T; CPU time used in the execution of the FDS code

7, total CPU time (IBM 370/3033AP) used to satisfy the
convergence criterion (76)

w, optimal value of the relaxation factor used in the SLOR
method (determined by repeated numerical experiments)

According to table III, the total CPU time required for the
solution of either equation (73) or equation (74) with SLOR
is about twice that with the current method. This comparison
becomes even more favorable toward the current method if

TABLE III.—CPU TIME COMPARISONS BETWEEN
CURRENT METHOD AND SLOR METHOD

Equation | Solution | ¢ /a, w, |N,| T, T,
method sec sec

(73) [Current |20.8839 | NA (13 | 1.871 { 1.345

(73) |SLOR NA | 1.752 |83 [3.790 | NA
(74) |Current | %9.989 | NA |6 |0.888 | 0.614
(74) |SLOR NA |1.510 |44 [2.039 | NA

3Evaluate from equation (54).



one recalls that the prediction of w, is elusive. A small error
in this prediction may result in a large increase in the value
of T,. For example, in the solution of equation (73) with
SLOR, a change of the value of the relaxation factor from 1.752
to 1.680 results in an increase in the value of 7, from 3.790
to 6.565 seconds. On the other hand, as shown in table IV,
the optimal value of c,/a, evaluated by using equation (54)
usually is very accurate. Moreover, since the fast Poisson
solver (ref. 14) currently used is a general purpose code, the
value of T; can be reduced further if the fast Poisson solver
is optimized.

To conclude this section, the current local relaxation
procedure is compared numerically with a procedure which
differs from the former only in the use of a constant relaxation
factor 7,. With the assumption of a, = ¢, = 1, problem 16
was solved with different values of 7.. As shown in table V,
0,(10) reaches its best value (= 2.278) at 7, = 0.103. Even
this best value is substantially below that (= 3.47) obtained
by using the local relaxation method (a4, = ¢, =1).
Furthermore, the accurate prediction of optimal 7. is by no
means easy (e.g., pp. 964 to 966 of ref. 8). Thus the current
procedure has a clear edge over a procedure that uses a
constant relaxation factor.

Application to a Three-Dimensional
Flow Problem

In this section, the current semidirect procedure is
incorporated into an Euler solver (ref. 9) to obtain the inviscid
solution for 3-D steady incompressible rotational flow in a
180° turning channel (fig. 3).

The Euler solver is formed by the inner and the outer loops.
The inner loop solves the elliptic equations, while the outer
loop solves the hyperbolic equations. In each pass through the

TABLE IV.—N, AND

0,(13) AS FUNCTIONS gA(lla(I;)EA\gZ
OF ¢,/a, IN THE FUIe\] .
NUMERICAL (CTION
SOLUTION OF .
EQUATION (73) PROBLEM 16
Sla, | N, | 0,13) 7. | OL10)
0.8 14 | 8.3343 0:22 (1):;314
28839 | 13 | 9.4040 | 1o
895 | 13 | 9.4801 10| 22
897 |13 | 9.4955 02 | 2.276
899 | 13 | 9.4987 103\ 2078
1900 | 13 9.4990 105 | 2.255
901 |13 | 9.4985 105 ) 2258
903 | 13 | 9.4949 e
905 |13 | 9.4882 2 2
1.0 14 | 8.4831

3Do not converge if

AEvaluated from equation (54). 7, = 0.13.

Actual optimal value.
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- .o
)-(? 1= ) - X2 =0,75 X]. 2
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Figure 3.—A converging and diverging turning channel (x; is suppressed).

inner loop, the velocity field V is updated to satisfy the
continuity equation

<

V=0 (77)
and the velocity-vorticity relation
VxV=0 (78)

where @ is a known divergence-free (i.e., vel= 0)
vorticity field. In the current study, a solution procedure
different from that described in reference 9 is used to solve
equations (77) and (78). The general solution of equations (77)
and (78) can be expressed as

— —

V=V + Vu (79)

where I_/; is any special solution of equation (78) and u is a
solution of

—_—

Vi=—-V.V (80)

As a result, once a special solution 17; is obtained (ref. 9), the
solution of equation (80) becomes the focal point of the inner-
loop calculations.

Let the coordinates (xy,x,,x3) refer to physical space and
(x1,%,%3) to computational space. It is shown in reference 9
that the turning channel in figure 3 is a mapping of a
parallelepiped 2 = x; = ~2,0.75=2x,=0.65,0.1 zx3 = 0)
in computational space. In physical space, equation (80) is a
Poisson’s equation. However, it cannot be solved by using
the current procedure, since the physical domain is not a
parallelepiped. On the other hand, in computational space, the
domain is a parallelepiped and equation (80) becomes

+—=*t1
ax?  ox3 ax}

Fu u u_ [V, N V2
axl axz

av.
+ n—i3——> (81)

ox 3



where V1,V 2, and V5 are the covariant components of the
known vector field ¥ and

)t cosh (mx;) + cos (wxp)

n = n(x, (32)

cosh (wx;) — cos (mxy)

The 3-D operator Q associated with equation (81) is a special
case of that defined in equation (42). Let the parameter G*
and the set ® for 3-D problems be defined similar to their
counterparts for 2-D problems. Using a line of arguments
similar to that presented in appendix D shows that the
parameter G reaches its minimum

o def, ¥ Nmax/ Mmin — 1

G def. X Tmax Tmin — 2
e V Nmax/Mmin + 1

83

if and only if the coefficients of the operator P (eq. (44)) are
chosen such that

& = & = N Mmax * Tmin &4
P1 D2

Here fpax and 7y, respectively, are the maximum and
minimum of the function 5 in ®.

In a successful effort to obtain a secondary flow solution
in the turning channel, equation (81) was solved once during
each of 25 passes through the inner loop (The source terms
on the right side of equation (81) vary from one pass to
another.) The central difference form of equation (81) is
obtained by using a grid with 144 uniform intervals in the
xq-direction and 12 uniform intervals in both the x,- and
x3-directions. It is assumed that the normal derivative of u
vanishes at all boundaries except at the exit plane (x; = 2)
where u =0. Thus npn. = 7(—2,0.65) = 0.9966 and
Nmin = 1(0,0.75) = 0.1716. As suggested by equation (84),
equation (81) was solved by assuming Py = P, =1 and
P = 0.4135. The values of O,(8) obtained range from 3.69
to 4.48. All are higher than the value of O,(8) == 3.07 as

evaluated from equation (83). The convergence rates achieved
by using the current procedure are dramatic improvements
over those obtained in reference 9.

Concluding Remarks

An efficient semidirect procedure for solving a large class
of nonseparable elliptic problems has been developed. In
applying this method, a user simply evaluates the terms on
the right side of equation (7) and uses them as the input for
a fast Poisson solver. The user is not required to deal with
a large sparse matrix as in the case of a traditional iterative
procedure.

The local relaxation factor is evaluated by using an algebraic
formula. This formula along with a convergence rate prediction
method is developed by using a heuristic argument. It is shown
numerically that the prediction method is an effective tool for
estimating the convergence rate.

The convergence rate can be accelerated by optimizing the
coefficients of the finite-difference operator P. It is shown that
this optimization can be carried out easily for a large class
of elliptic PDE’s.

It is also shown that the convergence rate of the current
procedure is relatively insensitive to the grid-cell size and
aspect ratio. The underlying reason for this insensitivity is the
existence of the uniform bounds Ap,x and Ay, Their
existence also contributes greatly to the simplicity of the
current procedure.

Although not shown in this report, the current procedure
may also be used to solve a second order quasi-linear elliptic
PDE. Since the coefficients of this PDE are functions of the
dependent variable and its derivatives, the local relaxation
factor must be updated during each iteration for this type of
application.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, January 13, 1986



Appendix A
Derivation of Equation (21)

In this appendix, we will derive equation (21) by using
equations (10) to (20). To proceed, we define the sets
n=0,1,2,..)

e {ei=0,1,2,..., (K~ 1); j=0,12,....,L~1)] (A

As a result of equations (12) and (13), for a givenn = 0, any
e;j(i,j=0, £ 1, £ 2,...) is equal to an element of ¢". Each
e” contains K X L elements and, therefore, can be considered
as a vector in a (K X L)-dimensional vector space C&*D),
Similarly, since

(k0 . (kD) (k,0)

bij =Qiskj=¢ijyr Gj=0,x1,£2,.) (A2)

any ¢$_’;"’) (@,j=0, 1, £2,...) is equal to an element of the

set
o (D def. {¢§§‘f’>|i =0,1,2,...,(K—1);
j=0,12,..,L-1} (A3

Each ¢®9 can also be considered as a vector in CK*D) 1t
can be shown that the set of (K X L) vectors

(e ®Dk=0,12,...(K—1); £=0,12,...L - 1)] (A4

forms an orthonormal basis for CX*D); that is,

K-1) (L-1 o T
£ L)
E <P§J)S0(i,j )—5kk'5ar'
i=0  j=0

kk’ =0,1,2,...,(K~1); ¢ =0,1,2,...,(L — 1)) (A5)

where 6y, is the Kronecker delta symbol. Also, it can be
shown that

nl (k! ke

P (‘P;(',j )> = Up(k'g)‘PE,j ) (A6)
and

~( (k,e)> = (kD) (k8 A7
Q §01,j - o—q ‘pt,j ( )

where 17, Q, ap(k'g), and oq(k'f) are defined in the section
Analysis.
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Each vector " can be expressed as a linear combination of
¢ *9s. This fact coupled with equations (12), (13), (A2),
and (AS) implies that

(E-1) (L-1)
d= XL B
k=0 (=0
n=0,1,2,..;ij=0, £ 1, +2,...) (A8)
where
K-1) (L—-1)
En,(k,t’)d__gf. E E elr't,j soi'(j/.c,l?) (A9)
i=0 j=0

Substituting equation (A8) into (10) and using equations (A5)
to (A7), one obtains

(En+1,(k,l?) _ En,(k,l’)) PACUE En,(k,f)oék,t’)

n=012,.;k=0,1,2,...,(K—1);

£=0,1,2,...,(L-1) (A10)
For k=0=0, equation (A10) is an identity since
03"% = of*® = 0. On the other hand, since o{*0 < 0 if
(k,f) € ¥, equation (A10) implies that

EMLED = [GED(p] s En kD e w (A11)
where G*9(z) and ¥, respectively, are defined in equations
(19) and (20). Equation (21) is an immediate result of equations
(A8) and (All) and the assumption

EM00 = ¢ (n=123,.) (A12)
It should be noted that equation (A12) is introduced to ensure
the uniqueness of the solution. Using equation (A9) and the
fact that ¢§?j’0) = 1/VKL for i,j =0, % 1, + 2,..., it can be
shown that equation (A12) is equivalent to equation (14).



Appendix B
Proof of Expressions (33) and (34)

Expressions (33) and (34) will be established by using the
following theorems:

Theorem 1

Let N\; and Ay, respectively, be the greatest and the smallest
eigenvalues of an N X N real symmetric matrix D %& @,)-
Let real vectors s = (51,82,...,5y) and ¢ = (t,,t,...,ty) satisfy

N

Z )2 =1 (B1)
w=1
and
) =1 n=12,..,N) (B2)

Then the following may be stated:

N
M) Nz Ois,nE Y d,,60°
u=1

N N
+ Z 2 duSSitut, = Ny (B3)
p=1

#

© o«
= o—-

(2) If, in addition, A;#d,, for u=1,2,...,N, then
(D;s,t) =\, if and only if 5,V1 —(tu)2=0, for u=1,2,...,
N, and (s1#1,82t,...,Snty) 18 an eigenvector of the matrix D
with eigenvalue A\;. This statement remains true if A; is
replaced by Ay.

(3)If 6 (1 < 6 < N) is an integer such that dss = A;, then
ds, =0 for all » # 6(1 <» <N). As a result, (D;s,?) is
independent of the component #;. This statement remains true
if \; is replaced by Ay.

This theorem is a special case of theorem 1 in reference 16.

Theorem 2

Let @, b, and & be the constants defined in expression (32).
Let

F(s1,5,11,) % a(s57)? + &(s5,)% + 2bsso111, (B4)
where sy, 8, t;, and 1, are real variables and satisfy

)2+ ()2 =1 (BS)

S1 = 0
} (B6)
s, 20
and
()*=1
(B7)
(n)?=1 } '

Then the following may be stated:
D MNpax = F = Apin >0 (B8)

max —

where A, and A\, respectively, are defined in equations
(30) and (31).
(2 If b=0and @ = &, then f = Muax = Amin
(3) If b=0and & > a(a > ¢), then
(a) F = Npax if and only if 5, =0 (s, =0)
(b) F = A\, if and only if s, =0 (s; = 0)

() If b # 0, then
(@) F = Ay if and only if either

s =87
§y = §5
=1
p=

|6}
or
51 = 8]
53 =8,
=1
-

o]

where
s et 8] >0 (B9)

Y Omax — )% + (6)?

13



PR, Sl RN (B10)
Vmax — &% + (b)?

max

(b) F = N\, if and only if either

$1 =81
Sy = 8§y
=1
6]
or
8§11 =81
Sy =8y
Hn=-1
h=-"
5]
where
sy 9t 18 (B11)
Vo — 8)? + (B)?
and
sy def. 2 = Amin >0 (B12)
Vhia — )% + (b2
Proof

Since (1) Apuy and Ay, are eigenvalues of the matrix

ydef. a B
e 4

and (2) Apax = A\yin >0, theorem 2 follows directly from
theorem 1. QED

To prove expressions (33) and (34), one notes that

5.0
yEDLE L = (5 + &(s))?
ok )

+2bsstt, (ki eV (B13)

where aq(k’e), 0,,(""’), a, b, ¢, and ¥ are defined in the section
Analysis, and

E sin (wk/K)
Ax

NEEREG)

kODev (B14)

Sy d:f .

E sin (wf/L)
Ay

NERERED)

k,0) € ¥ (B15)

def.
Sy =

£, % cos (wk/K) (*k=0,1,2,...,(K — 1)) (B16)
and
%" cos (nt/L) (t=0,1,2,... (L — 1)) (B17)

Using equations (B14) to (B17), one concludes that ¢))
6°+(6)’=1, 2) 5,20, s, =0, and 3) (t)> =<1,
(t,)* < 1. As a result, part (1) of theorem 2 implies that
Amax = Y*9 = N\ >0 k,0) € ¥ (B18)
Inequality (33) follows immediately from inequality (B18).

Using parts (1) to (3) of theorem 2 and the facts that 0
sy=0ifk=0and £=1,2,...(L — 1) and (2) 5, =0if =0
and k= 1,2,...(K — 1), it can be shown that

& =0)
. } (B19)
=0

Amax = Y max

)\min = Ymin



Thus, for b = 0, equation (34) is true and it represents a
condition weaker than equation (B19).
To prove equation (34) for b # 0, note that

7% <s1+’ = b I%I>
1% <S1+, s 1 - |§|>
A (Sl_’ s ~1, %>

belong to

D(F)Y {(s1,50,t1,1) | (s)? + (59)% = 1,
5,20, 520,@)? =1, 1) =<1}

However, since (t;)% + (£,)* = 2 for vy, v2, 73, and 4 while
(t)? + (1,)* < 2 for all (k,f) € ¥, it follows that v;, vz, ¥3,
and 4 do not belong to the set

T4 {(5,,5,,1,8,) | (k,0) € ¥}
Thus inequality (B18) and part (4) of theorem 2 imply that

Amax > Ymax = Ymin > Amin (B #0) (B20)

Furthermore, since (1) the function F is a continuous
function over its domain D(F), (2) T is a subset of D(F), and
(3) for any neighborhood of any one of vy,v,,7v3, and v,, one
can find a pair of integers K, and L, (see below) such that
the intersection of this neighborhood and I' is not null if
K = K,and L = L,. (Recall that both ¥ and I" are dependent
on the integers K and L.) Thus, one concludes that equation
(34) is valid for b = 0.

As an example, the existence of the integers K, and L,
referred to in (3) will be established as follows for the point
v, with the assumption b, > 0.

Proof

Since (s)% + (5,)? = (s7)? + (s;)> = 1, it need only be
proven that, given any ¢, > 0, ¢, > 0, and §, > 0, there exist
K, and L, such that for any K = K, and L = L,, two integers
k(K> k>0)and £ (L > £> 0) can be found to satisfy the
following conditions:

6x> |sx—sl+l

€ > |t 1] (B21)

(:y>

t, — ——
¢ Ibl'

To proceed, note that, without any loss of generality, it may
be assumed that

st > 6, 1—sf >4 (B22)

With the aid of the assumption b > 0 and expressions (B14),
(B16), (B17), and (B22), equation (B21) can be rewritten as

sin (wf/L)
sin (wk/K)

k

€, > 2 sin® il
2K

£

€ > 2 sin? Kkt
2L

+ >q”

(B23)

where
Ay  [a, | V1= (si— 8)? _

,n+d§f.__y it n 1 > 9
Ax Co $1 — 6.7:

n_dgf_ﬁ /@ \/l—fsf“+6x)2 >0
Ax Co s+ 6x

It is easy to show that there exist two integers k, > 1 and
£, > 1 such that

L+1 -1

> >q” B24
T 1 k1" B24)
Since
lim sin [(€, + 1)z] _ £+ 1

z—~0 sin [(k, - 1Dz] k,—1

. sin [(f, —Dz] 6 —1
lim =
z—~0 sin [(k, + 1)z} k,+ 1

15



One can find an integer M >> Max [k,,£,} such that

ts sin [w({, + 1)/M]
sin [w(k, — 1)/M]

> sin [7({, — 1)/M] -
sin [#w(k, + 1)/M]

(B25)
and
€, > 2 sin? M
2M
(B26)
{7
e, > 2 sin’ bt
2M
Let
K, Mk,
(B27)
L% Mz,

For any K = K, and L = L,, there exist six unique integers
a, B, v, «’, B’, and v’ such that

K= aMk, + M + v

(B28)
L=a'M,+B3'M+~’
and
a=zl k>=0 M>y=0

(B29)
a’'z1l £L>8'=0 M>y =20

16

If

k% &, (ak, + B)
} (B30)

0% g (o', + B)

are chosen, with the aid of expressions (B28) and (B29), it
can be shown that

k,+ 1 k,— 1

M

k
> —>
K
(B31)
L1 0 G-
M LT M

Using inequalities (B25), (B26), and (B31), and the fact that
M >> Max [k,,{,}, it can be shown that inequality (B23)
along with the conditions K>k >0 and L > > 0 are
satisfied if X and ¢ are chosen according to equation (B30).
QED

This appendix concludes with a discussion on expressions
(B19) and (B20). With the aid of equations (27) to (29) and
(35) to (37), equation (B19) implies that 7* = 7° and G = G°
when b = 0 even if the integers K and L are finite. On the
other hand, for b # 0, inequality (B20) implies that (1)
G’ > G° always and (2) 7° # 7" unless Ymax T Ymin = Nmax
+ Amin- Since the current local relaxation procedure and
convergence rate prediction method are developed from the
assumptions that G* = G° and 7° = 7°, one may expect that
the current procedure works less well, and the predictions
given by the parameter O,(n) become more conservative for
a PDE with a cross-derivative term. The second part of the
above expectations was confirmed by the numerical results
shown in the section Numerical Evaluation.



Appendix C
Derivation of Equations (39) to (41)

With the aid of equations (30) to (32), equation (37) can
be rewritten as

._aoeo+c-+-\/(aozo—c)2+4b2010>1 €1

aa, + ¢ — \/(aao —¢)? + 4b%a,

3G _ 8a(ac—b?) (o, —cla)

where a, % c,/a, > 0. It should be noted that, as a result

of equation (4), the denominator of the fraction in equation
(C1) is always positive. In view of equations (36) and (C1),
one may consider the parameter G’ as a function of a, b, c,
and «,, and obtains

da,

(€2)

where (ac, — ¢)* + 4b%x, # 0 is assumed. Equation (C2)
coupled with equation (4) implies that (1) G /da, < O if
a, < cla, and (2) 3G’ /da, > 0 if a, > c/a. Equations (39)
and (40) are the direct results of properties (1) and (2).

To prove equation (41), one notes that @ = é if ¢,/a, = c/a.
Thus equations (B13) to (B17) imply that

(1) ,Y(k,l’) + ,Y(K—k,é’) = ,y(k,l) + ,y(k,L—l’) =24

and

2
T+ 1%V (aozo—c)2+4b2ao-l:aao+c—‘/(aao—c)2+4b2ao:|

() ,Y(O,?) = ’Y(k’o) =4

for k=1,2,...,(K—1) and £ = 1,2,...,(L—1). Consequently
one concludes that

Ymax + Ymin = Mmax + Npin = 24 (C3)

Equation (41) follows directly from equations (28), (35), and
(C3).



Appendix D
Derivation of Equations (53) and (54)

To obtain the results given in equations (53) and (54), the
parameters «,%" ¢,/a, > 0 and 6,~jd§f‘ cijlai; > 0 are
introduced. With the assumption that b; = 0 for all (i,j) € ®,
equations (30) to (32), (37), and (49) can be used to show that

/8:) — 1
'(O‘(J/L)l if aa/ﬁij >1
G;=J(x /B,,)d_e_f, (o ﬁy) +
y ol Bij) =
1 — (a./B;:
L=@By) iy 2 g8, > 0
(a/By) + 1
(D)
Note that
2
crp 0 >l
(t-:1)2<0 if1>1>0

That is, the function J(z) increases monotonically if z > 1 and
decreases monotonically if 1 > ¢ > 0.

Let Bnax and B, be the parameters defined in
equation (55) and, for a given «,,

Ho) et Max_ [J(a,/8;)) (D3)
()€

Assuming Bpax > Bmin, it can be shown that

dj
%) S0 ifa,>a,
do,
) (D4)
df
W) i, <o
do,

where 0, %" VBuax * Bumin

Proof

As a result of equation (D2), J (o) equals to the greater
of ‘I(ao/ﬂmin) and J(ao/ﬁmax)' Since (1) o‘m/Bmin > 1, (2)
Qp/Bmax < 1, and (3) J (! Brin) = J(ap/Bmax), one

concludes that

. J(oto/Brin)  if @y =

J(a,) = (D3)
if o, < o,

J (0to/Bmax)

Inequality (D4) is a direct result of equations (D2) and (D5).
QED

Inequality (D4) implies that J(c,) increases monotonically if
o, > oy, and decreases monotonically if «, < «,,. Since
J (a,) = G* (egs. (51), (D1), and (D3)), equations (53) and
(54) simply state the fact that J (a,) reaches its minimum
J () = T () Brnin) = Gy if and only if o, = avy,.

In case that By, = B, €quations (D1) and (D3) imply
that the minimum of J («,) is zero and it is reached if and
only if o, = 8, where 8, denotes the value of either 3, or
Bmin- Equations (53) and (54) obviously are valid for this
special case.
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